
에너지 하베스팅의 핵심이 되는 열전소자 측정 기술

텍트로닉스 김수길부장

Contents

- Background of Thermoelectric Device
- Seebeck Effect/Peltier Effect

- TE Device Applications
- TE Device Measurement Instruments

Thermoelectric Device

- Thermoelectric effect is direct conversion of temperature difference to electric voltage and vice versa
- Thermoelectric device creates voltage with temperature difference between the two plates.

Heat Energy Conversion

Electrical Energy

Thermoelectric Effect

= Seebeck Effect + Peltier Effect

Key Factor is thermoelectric figure of merit as follows

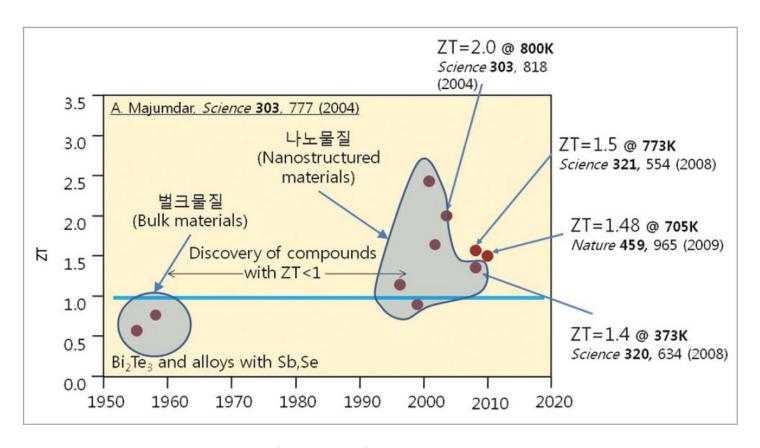
$$ZT_m = \frac{S^2 \sigma T_m}{k}$$

$$ZT_m = \frac{S^2 \sigma T_m}{k}$$
Thermoelectric figure of merit seems and the seems of the

k Thermal Conductivity

 $S^2\sigma$ Power Factor

Research Points

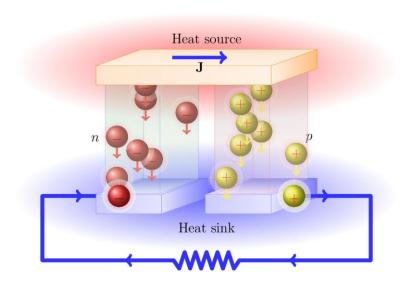

- How to increase figure of merit from 1
- 2. How to increase electrical conductivity or power factor
- 3. How to reduce thermal conductivity

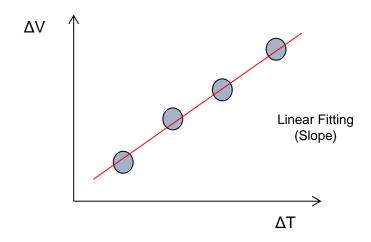
^{*} Problem is that power factor is in proportion to thermal conductivity

Figure of Merit Trend

Bulk material has below figure of merit1

Nanostructed material and compounds has higher than figure of merit 1

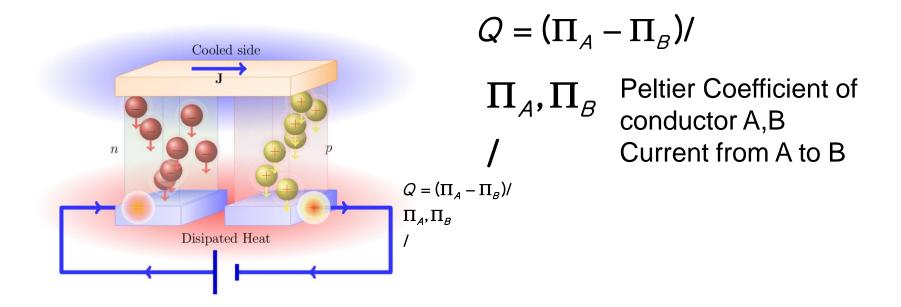

By reducing thermal conductivity


Higher than 1.5 is affordable to use it. Over 3 can be expected.

Seebeck Effect

$$E_{emf} = -S\Delta T$$

$$S = \frac{\Delta V}{\Delta T}$$


Temperature gap create electromotive force After settling, voltage can be monitored Measurement temperature by reading voltage(thermocouple) Electrical energy generation by temperature

(Energy harvest)

Peltier Effect

Peltier coefficient represent how much heat is carried per unit charge.

Charge current flow over junction with heat flow.

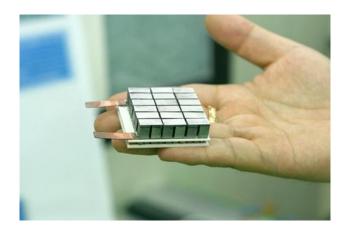
If there is difference in two coefficients, current flow will develop a discontinuity of heat flow

Cooled side looses heat, hot side gain heat

TE Device Applications

BMW 5 Series

By TE device, heat from engine is converted to electrical energy.
Re-use it to heat seat


TDDI in Japan

Thermoelectric refrigerator is selling

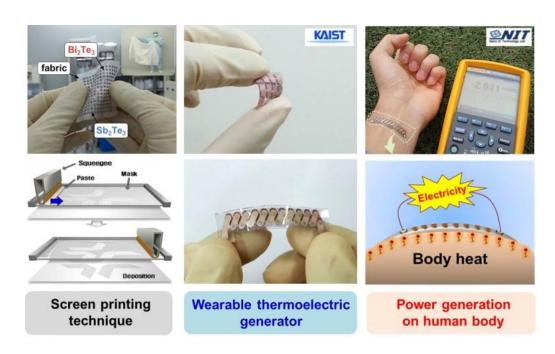
TE Device Applications more

- Fits 12 Wine bottles
- Double tempered glass door
- Reduced noise operation (15dB)
- Reversible door
- Internal light

- Adjustable temperature control
- Environmentally friendly
- Wind cooling system
- Thermo electric refrigeration
- Low power consumption

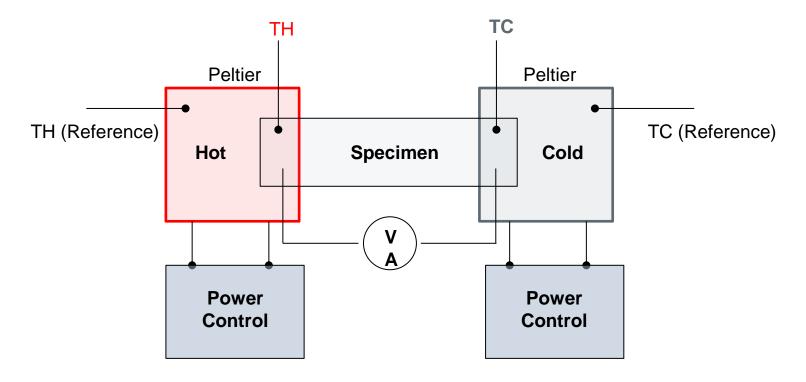
KERI

Compound thermoelectric module to covert heat into electric energy directly


ACE TEC

Wine cooler using thermoelectric device

TE Device Applications more


KAIST

Wearable generator Power generation from human body

TE Device Test Setup

- Step 1. Apply current to peltier device with one or two current sources to heat or cool the plate
- Step 2. Measure voltage or current in the TE device
- Step 3. As temperature goes on, measure voltage, plot Seebeck.
- * Measurement of electrical conductivity on device

TE Device Measurement Parameters

Measurement

- Voc : Open Circuit Voltage Measurement as maximum voltage from the device
- Isc: Short Circuit Current Measurement as maximum current from the device
- Temperature Measurement, plot Seebeck graph
- Electrical conductivity measurement by Van Der Pauw.

Source

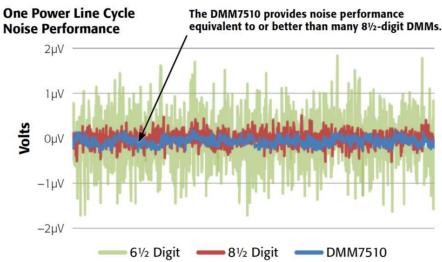
Very accurate current source to control temperature

2182A Nano Voltmeter

Low level voltage measurement for Voc Electrical Conductivity Measurement

DC Noise Performance 7 (DC noise expressed in volts peak-to-peak)

 $Response\ time = time\ required\ for\ reading\ to\ be\ settled\ within\ noise\ levels\ from\ a\ stepped\ input,\ 60Hz\ operation.$


Channel 1

Response Time	NPLC, Filter	10 mV	100 mV	Range 1 V	10 V
25.0 s	5, 75	6 nV	20 nV	75 nV	750 nV
4.0 s	5, 10	15 nV	50 nV	150 nV	1.5 μV
1.0 s	1, 18	25 nV	175 nV	600 nV	2.5 μV
667 ms	1, 10 or 5, 2	35 nV	250 nV	650 nV	$3.3 \mu\text{V}$
60 ms	1, Off	70 nV	300 nV	700 nV	6.6 μV
Channel 2 6, 10					
25.0 s	5, 75	_	150 nV	200 nV	750 nV
4.0 s	5, 10	_	150 nV	200 nV	$1.5 \mu V$
1.0 s	1, 10 or 5, 2	_	175 nV	400 nV	$2.5 \mu V$
85 ms	1, Off	_	425 nV	$1 \mu\text{V}$	9.5 μV

New DMM 7410

Measurement for Voc.

Precisely analyze current and voltage waveforms and transients with 1MS/sec, 18-bit digitizer

Large reading memory (27.5 million) to capture more of your signal

6485 Picoammeter

Low level current measurement for Isc Low level to 400fA accuracy

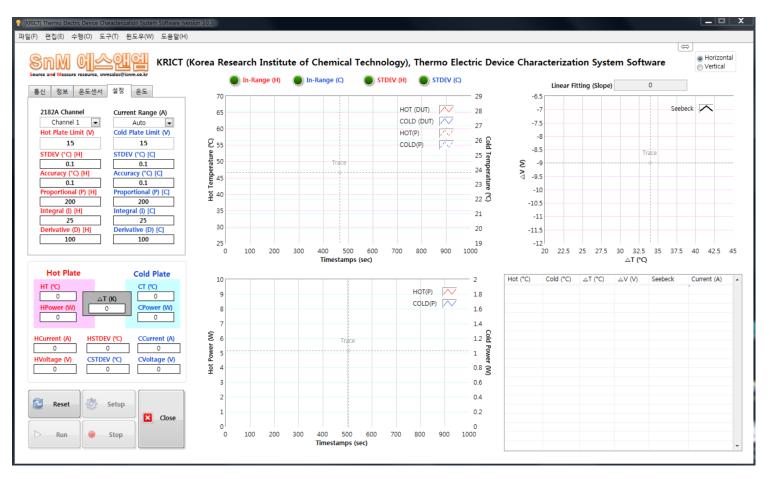
Range	5½ Digit Default Resolution	Accuracy (1 Year) ¹ ±(% rdg. + offset) 18°–28°C, 0–70% RH	Typical RMS Noise ²	Analog Rise Time ³ (10% to 90%)
2 nA	10 fA	0.4 % + 400 fA	20 fA	8 ms
20 nA	100 fA	0.4 % + 1 pA	100 fA	8 ms
200 nA	1 pA	0.2 % + 10 pA	1 pA	500 μs
$2 \mu A$	10 pA	0.15% + 100 pA	10 pA	$500 \mu s$
20 μA	100 pA	0.1 % + 1 nA	100 pA	500 μs
$200 \mu A$	1 nA	0.1 % + 10 nA	1 nA	$500 \mu s$
2 mA	10 nA	0.1 % + 100 nA	10 nA	500 μs
20 mA	100 nA	$0.1 \% + 1 \mu A$	100 nA	500 μs


2460 Source Meter

Current Source for temperature control

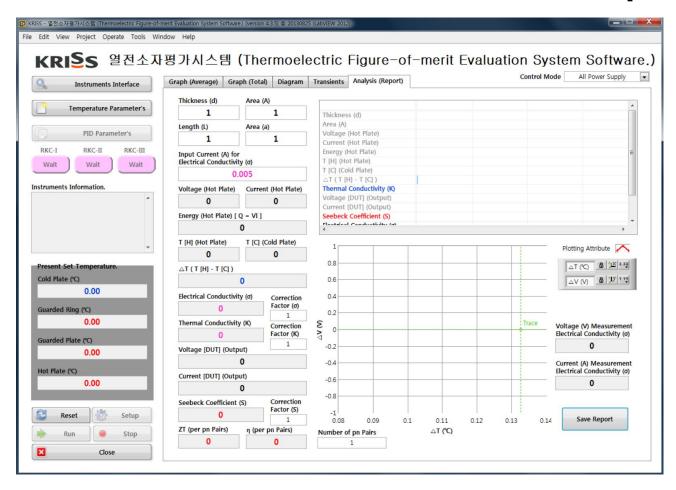
Generate high current up to 7A. Touch screen instruments

2460 main home screen



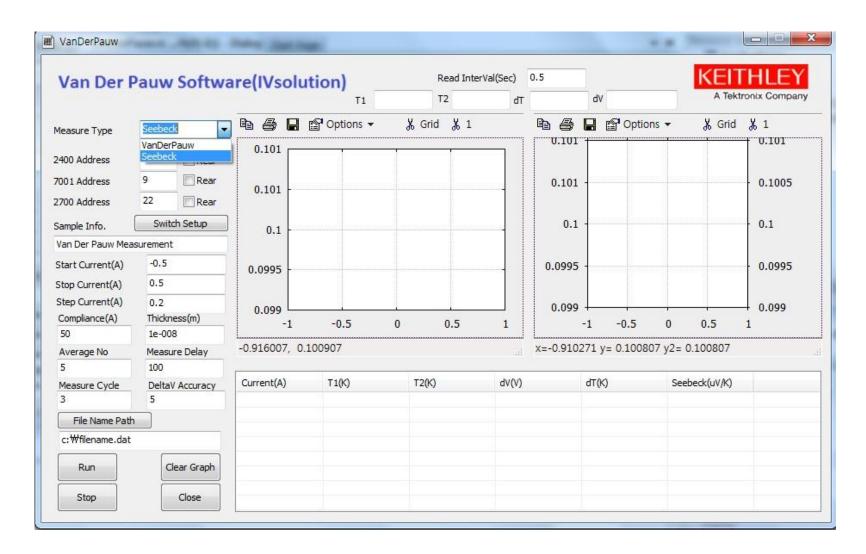
The Model 2460's icon-based menu structure helps even novice users configure tests quickly and confidently.

TE Device Measurement Software Example



Typical TE Device Measurement Software provided by channel SnM Temperature, Power, Seebeck plot

TE Device Measurement Software Example



TE Figure of Merit Evaluation Software provided by channel SnM Electrical conductivity, Seebeck, Figure of merit plot

TE Device Measurement Software Example

Conclusion

- Thermoelectric Device is technology to convert heat into electrical energy and vice versa
- Keithley provide perfect test solution for TE device in instruments
 Nano voltmeter, DMM, Picoammeter, and SourceMeter.
- Keithley also provide total software to measure Seebeck, and Figure of merit.

A Tektronix Company